rayny

Pd(OAc)₂-Catalyzed Macrocyclization of 1,2-Diazonaphthoquinones with Cyclic Ethers

Mitsuru Kitamura,* Masato Kisanuki, Koichi Kanemura, and Tatsuo Okauchi

Department of Applie[d C](#page-3-0)hemistry, Kyushu Institute of Technology, 1-1 Sensuicho, Tobata, Kitakyushu, 804-8550 Japan

S Supporting Information

[ABSTRACT:](#page-2-0) $Pd(OAc)_{2}$ was found to be an efficient catalyst for the macrocyclization of 1,2-diazonaphthoquinones and cyclic ethers. This transformation serves as an efficient method for the synthesis of protected 1,2-naphthalenediols.

α-Diazocarbonyl compounds are easily decomposed to the corresponding α-carbonylcarbenes or metal carbenes via photoirradiation, electrophilic activation, or the treatment of metal complexes.¹ Thus formed, these carbenes are electrophilic and readily react with various nucleophilic Lewis bases to generate the cor[re](#page-3-0)sponding ylides, which are widely used in organic synthesis.¹ For example, oxonium ylides are formed via the reaction of these carbenes and cyclic ethers, and then Stevens-type rear[ra](#page-3-0)ngement, 2 polymerization, 3 or macrocyclization4[−]⁶ proceeds subsequently. In the presence of a Rh-catalyst, carbenes formed from relati[ve](#page-3-0)ly stable diazo [co](#page-3-0)mpounds, such as 2[-dia](#page-3-0)zo-1,3-dicarbonyl compounds 1, react with cyclic ethers followed by preferential macrocyclization via oxonium ylide 2 to give the large cyclic ethers 3 and 4 with more than two molecules incorporated (Scheme 1, Paths a and b).^{5,6} Although there are few reports on the formation of medium-sized ring products 5 via the intramolecular cyclization of y[lide](#page-3-0) 2 (Path c), $5a$ recently, Rh-catalyzed cyclization of 2-diazo-1,3-dicarbonyl

Sc[he](#page-3-0)me 1. Rh-Catalyzed Formation of Macro Cyclic Ethers via the Reaction of 2-Diazo-1,3-dicarbonyl Compounds 1 and Small Cyclic Ethers

compounds 1 and five- or six-membered ring cyclic acetals was achieved, which was designed by $[N]$ -endo-trig cyclization $([N])$ $= 8$ or 9).^{5b}

Previously, we developed an efficient synthetic method for the prepa[rat](#page-3-0)ion of 1,2-diazonaphthoquinones via diazo-transfer with 2-azido-1,3-dimethylimidazolinium salts θ and have been investigating the metal-catalyzed synthesis of substitutednaphthol derivatives using these product[s.](#page-3-0)⁸ Pd(OAc)₂ is found to be an efficient catalyst for several coupling reactions of 1,2-diazonaphthoquinones. 8a,b During the [ev](#page-3-0)aluation of the stability of 2-diazonaphthoquinone $6a^9$ in the presence of a catalytic amount of $Pd(OAc)$, in various solvents $(CH,Cl₂,Cl₂)$ toluene, benzene, $CH₃CN$, and THF) [at](#page-3-0) reflux, the unexpected formation of 8-membered cyclic ether 7a and 13-membered cyclic ether 8a was observed in THF. We were intrigued by this uncommon formation of medium-sized rings and anticipated that this transformation could be a new method for the synthesis of protected 1,2-naphthalenediols. Similar to catechol derivatives, 1,2-naphthalenediols are attractive candidates as aromatic functional materials (or their building blocks), such as for use in solar cells, metal ligands, and antioxidants.¹⁰ However, to date, only a few synthetically useful processes have been reported for the synthesis of 1,2-naphthalenediols.^{[11](#page-3-0)} Therefore, the generality and efficiency of this $Pd(OAc)₂$ catalyzed cyclization of 1,2-diazonaphthoquinones with T[HF](#page-3-0) were explored. In addition, the $Pd(II)$ catalyst was efficient for the macrocyclization of 1,2-diazonaphthoquinones and oxetane.

Initially, the reaction of 2-diazonaphthoquinone 6a and THF was examined under several reaction conditions (Table 1). First, several palladium catalysts were examined (Table 1, entries 1–8). When 10 mol % Pd(OAc), [wa](#page-1-0)s used, 6a was consumed within 10 min, and cyclic ethers 7a and 8a we[re](#page-1-0)

Received: December 6, 2013 Published: March 3, 2014

ACS Publications

Table 1. Metal-Catalyzed Macrocyclization of 2- Diazonaphthoquinone 6a with THF^a

6a	N_2 metal cat. THF reflux 8a 7a		OН 9	
entry	metal cat.	time	7a(%)	8a (%)
$\mathbf{1}$	$Pd(OAc)_{2}$ (10 mol %)	10 min	29	26
$\mathbf{2}$	$Pd(OAc)$ ₂ (5 mol %)	40 min	27	28
3	$Pd(OAc)$ ₂ (2.5 mol %)	1.5 h	33	36
$\overline{4}$	$Pd(OAc)$ ₂ (1 mol %)	6.5 h	13	9
5^b	$Pd(OAc)$ ₂ (2.5 mol %)	3.5 h	21	31
6 ^c	$Pd(OAc)$ ₂ (2.5 mol %)	2.5 _h	Ω	$\mathbf{0}$
7	$PdCl_2$ (2.5 mol %)	2.5 _h	20	21
8	$Pd(OCOCF_3)$ ₂ (2.5 mol %)	1 h	21	25
9	$Rh_2(OAc)_4$ (1 mol %)	3 h	trace ^d	trace
10	$Rh_2(OCOCF_3)_4$ (1 mol %)	2.5 _h	4^e	13
11	$Rh_2(Oct)_4$ (1 mol %) ^f	2 h	11 ^g	5
12	$Cu(OAc)_{2}$ (2.5 mol %)	3 h	0^h	Ω
13	CuCl ₂ (2.5 mol %)	2.5 h	0^i	$\mathbf{0}$
14	$Cu(OTf)_{2}$ (2.5 mol %)	3 h	α^{j}	$\mathbf{0}$
15	$Cu(OTf) \cdot C_6H_6$ (2.5 mol %)	2.5 h	0^k	$\mathbf{0}$

^aReaction conditions: 6a (0.5 mmol) in THF (2 mL) at reflux. b The reaction was performed at 45 °C. LiCl (1.0 equiv) was added. $d\omega$ was
recovered in 28% yield. ω was recovered in 19% yield. ω is the first of ω was recovered in 19% yield. Rh₂(OCOC₇H₁₅)₄. ^{*g*}6a was recovered in 39% yield. ^{*h*}6a was recovered in 92% yield. $6a$ was recovered in 80% yield. ¹9 was obtained in 9% yield. 6a was recovered in 32% yield. ^k 9 was obtained in 3% yield. 6a was recovered in 25% yield.

obtained in 29% and 26% yields, respectively. As shown in Table 1, entries 1–4, the amount of $Pd(OAc)_2$ could be reduced to 2.5 mol % (Table 1, entry 3). At 45 °C, the yields of the cyclization products were decreased slightly (Table 1, entry 5). The addition of a halide anion has been reported to be effective in some Pd-catalyzed reactions.¹² Although 6a was consumed with 2.5 mol % $Pd(OAc)_2$ in the presence of an equimolar amount of LiCl, cyclic ethers [7a](#page-3-0) and 8a were not obtained (Table 1, entry 6). Use of PdCl, and $Pd(OCOCF_3)$, resulted in low yields of both products (Table 1, entries 7 and 8).

Interestingly, while only the Rh catalysts were reported to be effective for the metal-catalyzed macrocyclization reaction of cyclic ethers and α -carbonylcarbenes,^{5,6} they were not efficient for the cyclization of 6a and THF (Table 1, entries 9−11).

The series of Cu reagents exa[mi](#page-3-0)ned for the reaction, including $Cu(OAc)_{2}$, $CuCl_{2}$, $Cu(OTf)_{2}$, and $Cu(OTf) \cdot C_{6}H_{6}$, also did not provide the cyclized products 7a and 8a (Table 1, entries 12−15), although a minor amount of C−H insertion product 9 was formed in the reactions with $Cu(OTf)_{2}$ and $Cu(OTf) \cdot C_6H_5$ (Table 1, entries 14 and 15, respectively).

On the basis of these results, the optimum cyclization conditions were determined to be $Pd(OAc)$ ₂ (2.5 mol %) in THF at reflux.

Next, the scope and limitations of the $Pd(OAc)₂$ -catalyzed cyclization of 1,2-diazonaphthoquinones and THF were examined (Table 2). The substrate 2-diazonaphthoquinone 6b bearing an electron-withdrawing group at the C-4 position gave cyclization products 7b and 8b in 16% and 21% yields, respectively (Table 2, entry 1). On the other hand, 4-methoxy-2-diazonaphthoquinone 6c was completely consumed within 20 min, but the expected cyclization products were not generated, and dimerization product 11 was obtained in 10% yield (Table 2, entry 2). Introduction of a C-3 substituent was, however, efficient for the selective formation of 8-membered ring cyclic ethers 7, as shown in Table 2, entries 3 and 4. The reactions of 1-diazonaphthoquinones 10^9 also proceeded smoothly and selectively to give 8-membered cyclic ethers 7 in good to high yields (Table 2, entries 5−[9\)](#page-3-0). Simple 1-diazonaphthoquinone 10a gave 7a in 45% yield, accompanied by 2% of the 13 membered cyclic ether 8a (Table 2, entry 5). The reaction of 6 bromo-1-diazonaphthoquinone 10b gave 8-membered ether 7f

Table 2. Pd(OAc)₂-Catalyzed Macrocyclization of 1,2-Diazonaphthoquinones 6 and 10 with THF^a

a
Reaction conditions: 6 or 10 (0.5 mmol), Pd(OAc)₂ (2.5 mol %) in THF (2 mL) at reflux. ^b11 was obtained in 10% yield.

as the sole product in 53% yield (Table 2, entry 6). With these substrates, introduction of an appropriate substituent at the C-3 position also clearly improved the yield [of](#page-1-0) cyclic ether 7 (Table 2, entries 7 and 8). In the reaction of 3-siloxymethyl-1 diazonaphthoquinone 10c, cyclic ether 7d was formed in 78% [yi](#page-1-0)eld (Table 2, entry 7), and the reaction of 3-methoxycarbonyl-1-diazonaphthoquinone 10d gave 8-membered cyclic ether 7e in [84](#page-1-0)% yield (Table 2, entry 8). However, the corresponding of phenyl ester 10e afforded cyclic ether 7g in a lower yield (35%) (Table 2, entr[y 9](#page-1-0)).

We also examined the $Pd(OAc)₂$ -catalyzed reaction of 1,2diazonaphthoquinones an[d](#page-1-0) oxetane (Table 3). In the reaction

Table 3. $Pd(OAc)$ -Catalyzed Macrocyclization of 1,2-Diazonaphthoquinones 6a and 10a with Oxetane^a

^aReaction conditions: 6a or 10a (0.5 mmol), Pd(OAc)₂ (2.5 mol %) in oxetane (2 mL) at reflux. ${}^{b}Rh_{2}(OAc)_{4}$ (1 mol %) was used instead of Pd(OAc)₂. ϵ 6a was recovered in 84% yield. ϵ 10a was recovered in 34% yield.

of 2-diazonaphthoquinone 6a, 15-membered cyclic ether 12 was formed in 66% yield after stirring for 3 h at reflux.¹³ A similar $Rh_2(OAc)_4$ -catalyzed reaction has been reported for 2diazo-1,3-dicarbonyl compounds.^{6b} Ho[w](#page-3-0)ever, $Rh_2(OAc)_4$ was ineffective for the cyclization of diazonaphthoquinone 6a, as shown in Table 3, entry 2. In [ad](#page-3-0)dition, the reaction of 1 diazonaphthoquinone 10a was slower than that of 2-diazonaphthoquinone 6a, and 15-membered product 12 was formed in just 26% yield along with acyclic ether 13 (5%) after stirring for 20 h (Table 3, entry 3).

In addition, the 1,2-diazonaphthoquinones also reacted with tetrahydropyrane (THP) in the presence of a catalytic amount of $Pd(OAc)₂$ to afford a mixture of 9-membered cyclic ether 14 and 15-membered ether 15 (Scheme 2).

In Scheme 3, a possible reaction mechanism is depicted for the $Pd(OAc)_{2}$ -catalyzed formation of medium-sized cyclic ethers (7, 14) and macrocyclic ethers (8, 15) from 2 diazonaphthoquinone 6 in cyclic ether (THF, THP). First, $Pd(OAc)$ ₂ reacts with diazonaphthoquinone 6 to form $Pd(II)$ carbene complex I^{14} In the case of the reaction in THF, nucleophilic attack of THF on carbene complex I proceeds to form oxonium ylid[e](#page-3-0) II ,¹⁵ which may be aromatic palladium naphtholate II′. Successively, II reacts with THF giving III. Since 5 endo-tet cyclizat[ion](#page-3-0) is highly disfavered commonly,¹⁶ 8membered cyclic ether 7 is not formed directly from II, but is formed by 8-exo-tet cyclization of III (Path A). Macro[cyc](#page-3-0)lic ether 8 is formed from the same intermediate III by 10-endo-tet Scheme 2. Pd $(OAc)_{2}$ -Catalyzed Cyclization of 1,2-Diazonaphthoquinones 6a and 10a with THP

Scheme 3. Possible Reaction Mechanism

cyclization (Path B). The C-3 substituted substance $R¹$ can more easily attain the required conformation of III for 8-exocyclization as compared to the C-3 unsubstituted substance. For the reaction of 1-diazonaphthoquinone 10 and THF, the hydrogen at the C-8 position in 10 is assumed to function similarly to C-3 substituent R^1 in 2-diazonaphthoquinone 6, resulting in the selective formation of exo-cyclization product 7.

Compared to the reaction with THF, the reaction with THP gave lower yields of cyclic ethers, and different selectivity in the formation of cyclic ethers (medium-sized cyclic ether/macro cyclic ether) was observed, which would be attributed to the cyclization mode, that is 8-exo-tet/10-endo-tet cyclization for THF vs 9-exo-tet/11-endo-tet cyclization for THP.

In conclusion, we developed a new method for the synthesis of medium-sized/macrocyclic ethers via the reaction of diazonaphthoquinones in the presence of a catalytic amount of $Pd(OAc)_{2}$. This transformation also serves as an efficient method for the preparation of protected 1,2-naphthalenediols.

Further studies on the $Pd(OAc)₂$ -catalyzed cyclization reaction of diazonaphthoquinones with heterocyclic compounds are in progress.

■ ASSOCIATED CONTENT

S Supporting Information

Experimental procedures and characterization data, including 1 H and 13 C NMR spectra for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: kita@che.kyutech.ac.jp.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

Support for this work by the Naito Foundation is gratefully acknowledged.

■ REFERENCES

(1) For reviews, see: (a) Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091. (b) Doyle, M. P.; Ye, T.; McKervey, M. A. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds; John Wiley & Sons: New York, 1998. (c) Zhang, Z.; Wang, J. Tetrahedron 2008, 64, 6577.

(2) Nozaki, H.; Takaya, H.; Noyori, R. Tetrahedron 1966, 22, 3393. (3) (a) Ihara, E.; Saiki, K.; Goto, Y.; Itoh, T.; Inoue, K. Macromolecules 2010, 43, 4589. (b) Ihara, E.; Hara, Y.; Itoh, T.; Inoue, K. Macromolecules 2011, 44, 5955.

(4) Kirmse, W.; Lelgemann, R. Chem. Ber. 1991, 124, 1865.

(5) (a) Cenini, S.; Cravotto, G.; Giovenzana, G. B.; Palmisano, G.; Tollari, S. Tetrahedron 1999, 55, 6577. (b) Ballesteros-Garrido, R.; Rix, D.; Besnard, C.; Lacour, J. Chem.-Eur. J. 2012, 18, 6626.

(6) (a) Zeghida, W.; Besnard, C.; Lacour, J. Angew. Chem., Int. Ed. 2010, 49, 7253. (b) Rix, D.; Ballesteros-Garrido, R.; Zeghida, W.; Besnard, C.; Lacour, J. Angew. Chem., Int. Ed. 2011, 50, 7308.

(7) Kitamura, M.; Tashiro, N.; Sakata, R.; Okauchi, T. Synlett 2010, 2503.

(8) (a) Kitamura, M.; Sakata, R.; Okauchi, T. Tetrahedron Lett. 2011, 52, 1931. (b) Kitamura, M.; Kisanuki, M.; Sakata, R.; Okauchi, T. Chem. Lett. 2011, 40, 1129. (c) Kitamura, M.; Kisanuki, M.; Okauchi, T. Eur. J. Org. Chem. 2012, 905. (d) Kitamura, M.; Araki, K.; Matsuzaki, H.; Okauchi, T. Eur. J. Org. Chem. 2013, 5045.

(9) In this manuscript, 2-diazonaphthoquinone means 2-diazo-1(2H)-naphthalenone derivative and 1-diazonaphthoquinone means 1 diazo-2 $(1H)$ -naphthalenone derivative.

(10) (a) Stahl, P.; Kissau, L.; Mazitschek, R.; Huwe, A.; Furet, P.; Giannis, A.; Waldmann, H. J. Am. Chem. Soc. 2001, 123, 11586. (b) Lu, T.; Shao, P.; Mathew, I.; Sand, A.; Sun, W. J. Am. Chem. Soc. 2008, 130, 15782. (c) Madan, S.; Cheng, C. J. Org. Chem. 2006, 71, 8312. (11) (a) Platt, K. L.; Oesch, F. J. Org. Chem. 1983, 48, 265. (b) Zambrano, J. L.; Dorta, R. Synlett 2003, 1545. (c) Crandall, J. K.; Zucco, M.; Kirsch, R. S.; Coppert, D. M. Tetrahedron Lett. 1991, 32, 5441.

(12) Fagnou, K.; Lautens, M. Angew. Chem., Int. Ed. 2002, 41, 26.

(13) For a photoinduced similar macrocyclization of the diazoquinone and oxetane, see ref 4. The maximum yield of the macrocyclic compound was 16%.

(14) (a) Anciaux, A. J.; Hubert, A. J.; Noels, A. F.; Petiniot, N.; Teyssie, P. J. Org. Chem. 1980, 45, 695. (b) Denmark, S. E.; Stavenger, R. A.; Faucher, A.-M.; Edwards, J. P. J. Org. Chem. 1997, 62, 3375. (c) Greenman, K. L.; Carter, D. S.; Van Vranken, D. L. Tetrahedron 2001, 57, 5219. (d) Bröring, M.; Brandt, C. D.; Stellwag, S. Chem. Commun. 2003, 2344. (e) Albéniz, A. C.; Espinet, P.; Manrique, R.; Pérez-Mateo, A. Chem.-Eur. J. 2005, 11, 1565. (f) Greenman, K. L.; Van Vranken, D. L. Tetrahedron 2005, 61, 6438. (g) López-Alberca, M. P.; Mancheño, M. J.; Fernández, I.; Gómez-Gallego, M.; Sierra, M. A.; Torres, R. Org. Lett. 2007, 9, 1757. (h) Devine, S. K. J.; Van Vranken, D. L. Org. Lett. 2007, 9, 2047. (i) Barluenga, J.; Moriel, P.; Valdes, C.; ́ Aznar, F. Angew. Chem., Int. Ed. 2007, 46, 5587. (j) Chen, S.; Wang, J. Chem. Commun. 2008, 4198. (k) Peng, C.; Wang, Y.; Wang, J. J. Am. Chem. Soc. 2008, 130, 1566. (l) Xiao, Q.; Ma, J.; Yang, Y.; Zhang, Y.; Wang, J. Org. Lett. 2009, 11, 4732. (m) Zhang, Z.; Liu, Y.; Gong, M.; Zhao, X.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2010, 49, 1139. (n) Zhang, Z.; Liu, Y.; Ling, L.; Li, Y.; Dong, Y.; Gong, M.; Zhao, X.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2011, 133, 4330. (o) Chen, Z.-S.;

Duan, X.-H.; Zhou, P.-X.; Ali, S.; Luo, J.-Y.; Liang, Y.-M. Angew. Chem., Int. Ed. 2012, 51, 1370. (p) Xiao, Q.; Wang, B.; Tian, L.; Yang, Y.; Ma, J.; Zhang, Y.; Chen, S.; Wang, J. Angew. Chem., Int. Ed. 2013, 52, 9305. (q) Yang, K.; Zhang, J.; Cheng, B.; Zhao, L.; Zhai, H. Org. Lett. 2013, 15, 808. (r) Khanna, A.; Premachandra, I. D. U. A.; Sung, P. D.; Van Vranken, D. L. Org. Lett. 2013, 15, 3158. (s) Khanna, A.; Premachandra, I. D. U. A.; Sung, P. D.; Van Vranken, D. L. Org. Lett. 2013, 15, 3694.

(15) Padwa, A.; Hornbuckle, S. F. Chem. Rev. 1991, 91, 263.

(16) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734.